

The challenges in Central European aquaculture: *From the perspective of a fish feed producer*

Eduard Schneeberger 28. September 2023

Introduction Garant-Tiernahrung

- Austrian cooperative compound feed producer with three production sites
- Owned by RWA (Raiffeisen Ware Austria)
- Two licensees (Unser Lagerhaus in Carinthia, Raiffeisenverband Salzburg) with a further four production sites
- Production of feed for farm animals, horses, game, rabbits and fish
- Fish feed production in Aschach since 1985; several investments in the fish feed production-line since 2012
- Fish feed export to 12 countries
- Garant brands:

Site Graz

Extruder Aschach

Fish feed business at Garant

Fry Feed

Aqua Start 0,3	
Aqua Start 0,5	4
Aqua Start 0,7	4
Aqua Start 1,0	Е
Aqua Start 1,5	5

Trout Feed

Aqua Uni	6
Aqua Balance	
Aqua Dynamic	8
Aqua Profi	
Aqua Dynamic Swim	

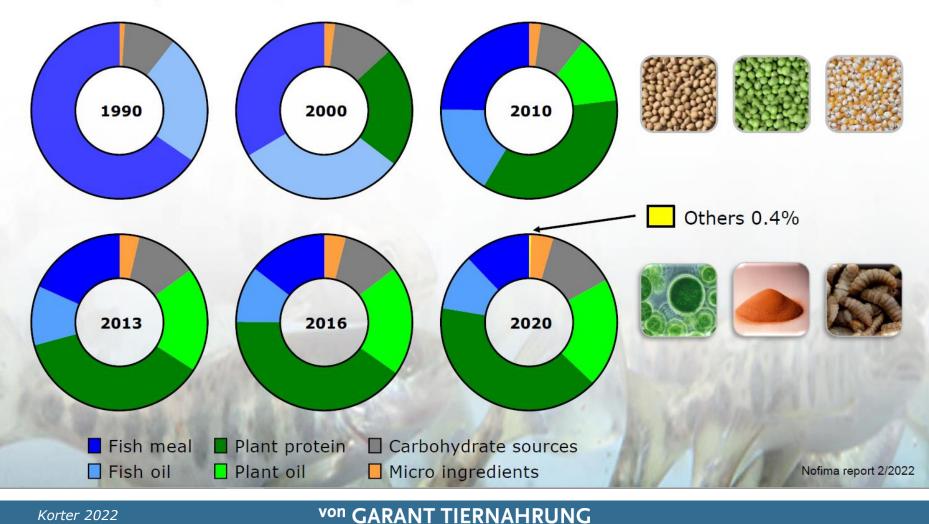
5		
Aqua Profi Pigment1	11	
Aqua Pigment Swim1	12	

Carp Feed

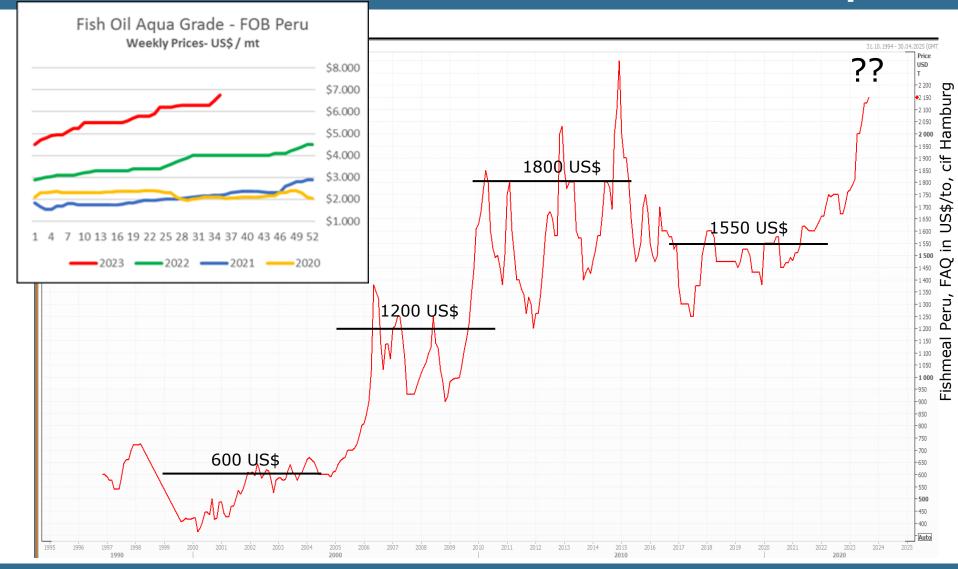
Aqua Classic	13
Aqua Omega	14
Aqua Vital Swim	15

Special Feed

African Catfish:	
Aqua Wels swim	
Aqua Catfish swim	17
European Catfish: Aqua Uni	
Sturgeon: Aqua Caviar	



Change in fish feed formulations over the last 30 years


Feed composition, Norwegian farmed salmon 1990-2020

Korter 2022

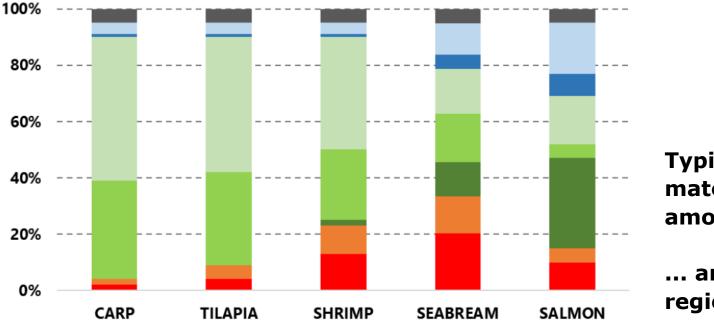
Development of fishmeal prices (Fishmeal 64% FAQ Peru in US\$/to, cif Hamburg)

Köster 2023_KW 35

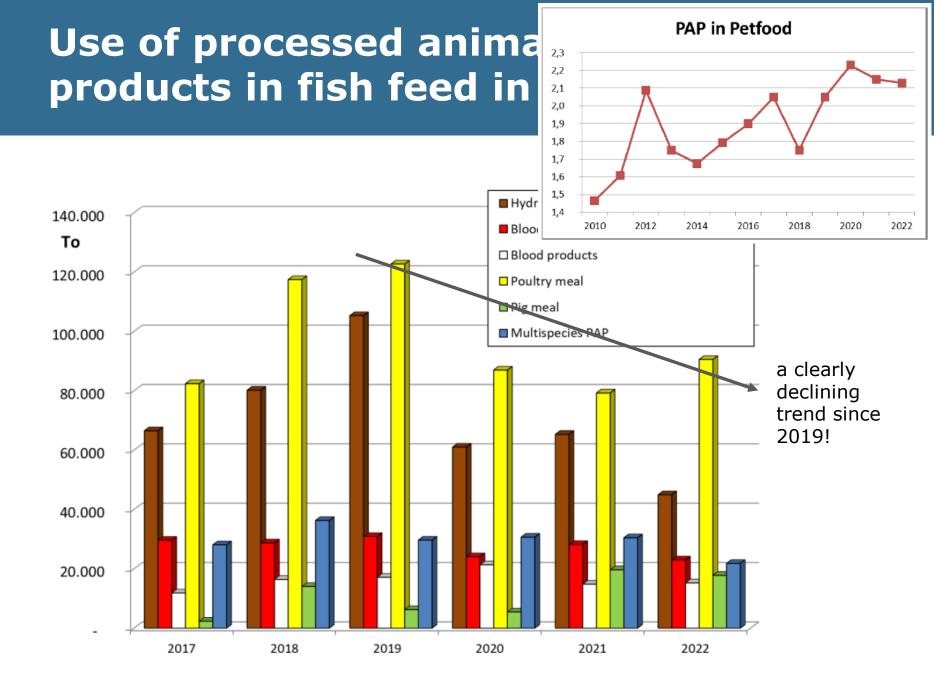
Adud

Reuters 2023_KW 35

Strong global growth in aquafeed production



Raw material mix in "modern" aqua feeds


Source: Dias 2022

Typical raw material change among species

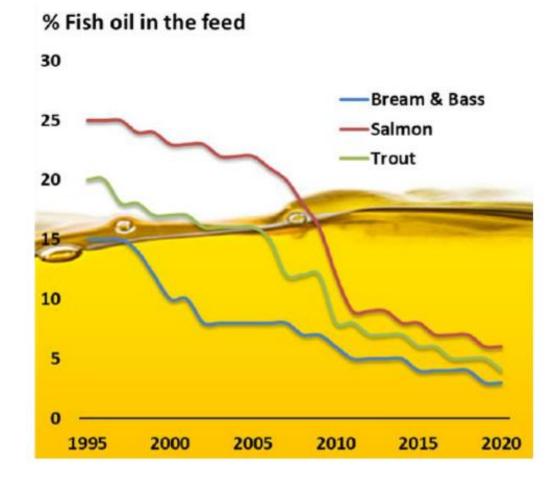
... and among regions

- Vitamins, minerals, additives
- Vegetable oils
- Fish oil
- Cereals and pulses (wheat, corn, cassava, peas, faba,...)
- Oilseed meals (soybean, rapeseed, sunflower, peanut,...)
- Plant protein concentrates (soy, wheat gluten, corn gluten, pea)
- PAP: processed (land) animal proteins
- Fishmeal

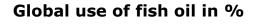
EFPRA 2023

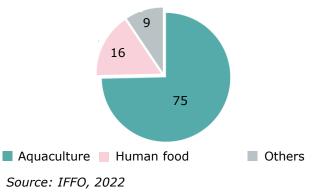
Many start-ups and several large production facilities for insect meals

- Approved for aquaculture in the EU since 2017
- International Platform on Insects for Food and Feed (IPIFF) <u>https://ipiff.org/</u>
- Most insect meals come from the larvae of the black soldier fly and the yellow mealworm
- Several large plants are in operation, under construction and in planning
- Production volume 2021: 12.500 to; by 2025 a production volume of 186 kTo is expected (rather optimistic assumption)


Ynsect, yellow mealworm; ~35 kTo

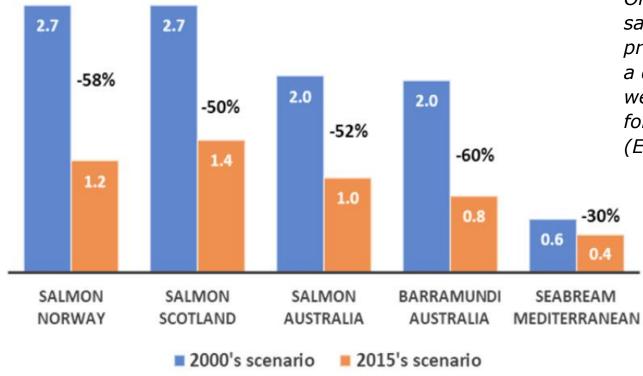
Innovafeed, black soldier fly ; ~35 kTo


Gradual replacement of fish oil



The general reduction of fish oil levels in aquafeeds was achieved by vegetable oils (and partly by animal fats)

BUT: The dependence on fish oil is still high!



Fish oil replacement by plant oils has consequences...

Change in EPA+DHA content (g/100 g) in fish fillets between the years 2000 and 2015

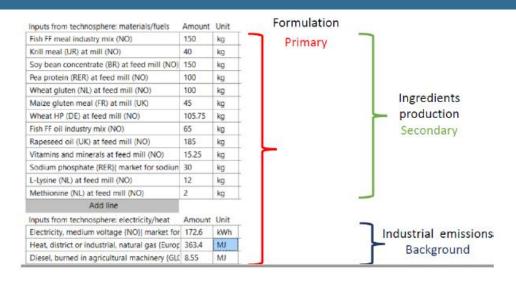
One portion of farmed salmon (130-150 g) still provides 1,5 g EPA+DHA, a dose that covers the weekly recommendation for healthy adults (EFSA, 2012)

Sources: NIFES (2016), Sprague et al. (2016), Nichols et al. (2014), Vasconi et al. (2017)

Marine algae oils a new EPA+DHA source

Marine microalgae (especially Schizochytrium) accumulate DHA-rich oils or DHA+EPA-rich oil

Today, microalgae are cultivated on an industrial scale under hetero-trophic conditions through fermentation and produce omega-3 fatty acids from sugar.

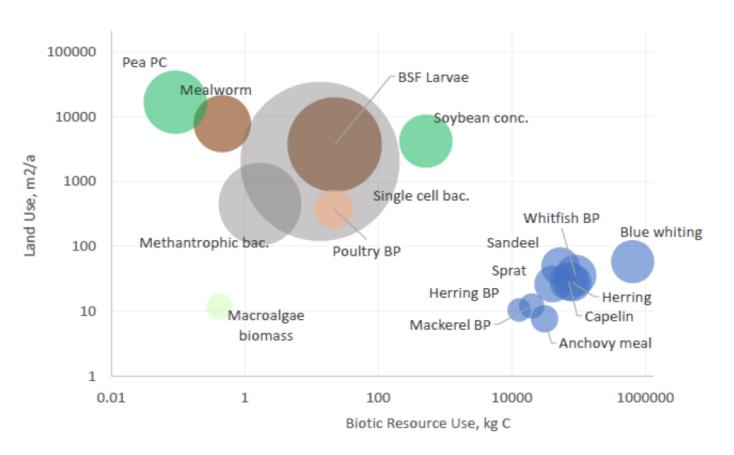


Veramaris production site in Nebraska, production of EPA+DHA-rich algae oil

Product	Development Partners	Source	Туре	Lipid Content	
AlgaPrime [™] DHA	Corbion (TerraVia/Bunge) ^e	Microalgae	Algal biomass	60	
DHAgold™	DSM Nutritional Products	Microalgae	Algal biomass	49	
DHA Natur TM	ADM Animal Nutrition	Microalgae	Algal biomass	50-60	
ForPlus TM	Alltech Coppens ^f	Microalgae	Algal biomass	61	
Nymega™	Heliae Development ^g	Microalgae	Algal biomass	65	
Veramaris [®] Oil	Veramaris ^h	Microalgae	Oil	100	

Commercial algae oils, Tocher et al. 2019

Sustainability aspects will become more important in the future...


In the future, feed producers will have to consider sustainability indicators in addition to nutritional and technical constrains

>> Need for standardized and "neutral" sustainability indicators.

Impact category /	Unit	Total	Salmon T1	Fish FF meal	Krill meal	Soy bean	Pea protein	Wheat gluten	Maize gluten	Wheat HP (DE)	Fish FF oil	Rapesee oil (UK)	Vitamins
Cumulative Energy use (non renewa	MJ	2.23E4	х	3.58E3	2.28E3	3.31E3	1.58E3	3.67E3	615	306	1.16E3	2.69E3	303
Consumptive Water Use Blue	m3	27.7	x	0.913	0.575	0.438	7.39	0.971	1.44	0.0417	0.286	0.641	2.02
Biotic Resource Use	kg C	5.31E4	х	4.53E4	472	77.3	х	х	х	х	7.25E3	х	0.00997
Land competition	m2a	2.83E3	x	8	17.6	622	597	348	58.9	109	1.25	1.03E3	5.17
Cumulative energy use (renewables	MJ	1.41E3	х	67.6	43	366	55	52.7	12.9	3.51	18.4	24.4	15.6
Global warming (GWP100a)	kg CO2 eq	1.9E3	x	247	175	201	132	355	42.6	41.8	79.9	380	18.5
Ozone layer depletion (ODP)	kg CFC-11 eq	0.000134	x	3.97E-5	2.46E-5	6.37E-6	1.08E-5	7.29E-6	5.6E-6	6.22E-7	1.15E-5	5.41E-6	1.8E-6
Photochemical Oxidation Potential	kg C2H4 eq	1.3	x	0.0955	0.0796	0.838	0.027	0.0329	0.00472	0.00544	0.0294	0.129	0.00796
Acidification	kg SO2 eq	20.3	x	3.38	2.4	1.33	1.27	2.66	0.364	0.622	1.02	5.83	0.121
Eutrophication	kg PO4 eq	12.8	x	0.689	0.425	1.14	1.29	2.2	0.316	0.584	0.208	5.22	0.034
Embodied Fish	kg Fish In	1.13E3	x	630	268	x	x	x	x	х	235	x	x
GWP LUC	kg CO2 eq	845	x	0.182	0.168	820	3.4	5.97	0.0229	2.02	0.0379	12.7	0.126
Consumptive Water Use Green	m3	1.29E3	x	x	x	387	307	112	25.4	49.5	x	409	x

Newton, zit. Dias 2022

Conflicts between impact categories are often unavoidable

Land Use, Biotic Resource Use and Global Warming Potential (bubble size) major feed ingredient (1 tonne production)

Bubble size: increasing carbon footprint

Newton, cit. Dias 2022

- Fish meal and fish oil were the dominant raw materials sources in fish feed until 2000 and were then replaced to a large extent by vegetable and animal proteins and fats
- Alternative raw materials such as algae oil, insect meal etc. will be used in fish feed in the future. The level of use will be determined by the relative price of this raw materials
- Sustainability indicators will be an integral part of the recipes in the future.

